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Abstract

Klop, J.W., V. van Oostrom and F. van Raamsdonk, Combinatory reduction systems: introduction
and survey, Theoretical Computer Science 121 (1993) 279-308.

Combinatory reduction systems, or CRSs for short, were designed to combine the usual first-order
format of term rewriting with the presence of bound variables as in pure A-calculus and various
typed A-calculi. Bound variables are also present in many other rewrite systems, such as systems with
simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who
introduced a restricted class of CRSs and, under the assumption of orthogonality, proved conflu-
ence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair)
and left-linear (no global comparison of terms necessary).

We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive
power, and give an outline of a short proof of confluence. This proof is a direct generalization of
Aczel’s original proof, which is close to the well-known confluence proof for A-calculus by Tait and
Martin-Lof. There is a well-known connection between the parallel reduction featuring in the latter
proof and the concept of “developments”, and a classical lemma in the theory of J-calculus is that of
“finite developments”, a strong normalization result. It turns out that the notion of “parallel
reduction” used in Aczel's proof gives rise to a generalized form of developments which we call
“superdevelopments” and on which we will briefly comment.
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We conclude with mentioning the results of a comparison of CRSs with the recently proposed and
strongly related format of higher-order rewriting: Nipkow’s HRSs (higher-order rewrite systems).

1. Introduction

We start in a somewhat informal way by discussing various issues of term rewriting
with bound variables, or “higher-order rewriting” as it is often called nowadays. This
is done in Sections 2-10. These sections are intended to give a gentle introduction to
combinatory reduction systems (CRSs). In Sections 11-12 we give the formal (and
quite lengthy) definition of CRSs. Section 13 contains an outline of a short confluence
proof for orthogonal CRSs and a brief discussion of “superdevelopments”. Section 14
mentions related work, and compares CRSs with the higher-order rewrite systems
introduced by Nipkow [37]. Section 15 concludes with a discussion of current
research issues for CRSs. The appendix presents several “large” examples of ortho-
gonal CRSs, such as polymorphic second-order A-calculus.

2. Definable extensions of A-calculus

Although A-calculus is able to define many data types, such as natural numbers with
arithmetic operators, it is often more convenient to construct an extension of A-
calculus where such data types are explicitly added. Thus, one may consider, e.g.,
A-calculus plus pairing given by the reduction or rewrite rules

Ax.M)N->M[x:= N],
left(pair MN)—M,
right(pair MN)—N.

The reduction system can be simulated in “pure” untyped A-calculus by taking the
following terms: left:= Ap.p(Amn.m), right := Ap.p(imn.n), pair:= Amnz.zmn. This
translation has the property that left(pair MN)-»M and right(pair MN)—» N for
all M and N, ie. every step in the original system is simulated by a finite reduction
sequence in A-calculus. We will call an extension like this a (directly) definable
extension of A-calculus. It seems a natural minimal requirement for an extension to be
definable that reduction can be simulated. Minimal but not sufficient. The encoding
should not be too liberal. Consider for instance the reduction rule:

compare MM —equal.

Reduction according to this rule can be simulated in i-calculus by taking:
compare:= Axy.] with I=IAx.x and equal:=1. Then we have indeed
compare MM -»equal. However, we also have compare MN -»equal, for all M, N.
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This illustrates that a more sophisticated notion of definability has to be developed,

which we will not attempt to do in the present paper. We claim that the translations
presented in this paper are not too liberal.

3. Proper extensions of A-calculus

One might wonder whether every reduction system consisting of A-calculus ex-
tended with term rewriting rules is definable in A-calculus. The compare rule of the
previous section is a typical example of a reduction system for which this is not the
case (for a reasonable notion of definability, cf. [30]).

If we add the rule

pair(left M )(right M )->M

to the pair rules, the system is no longer a directly definable one. Hence, this extension
(called A-calculus with surjective pairing) is a proper extension of i-calculus. This has
been proved by Barendregt [4].

In both cases the problem is the double occurrence of the meta-variable M in the
left-hand side of a rule. Such a rule is called “not left-linear”.

An example of another kind of a reduction system that cannot be defined in
J-calculus is obtained by adding the rules for parallel or:

or M true—true,
or true M —>true.

Again, there is no A-term or implementing these rules in the direct sense given above.
Now the problem is not non-left-linearity, but the inherent parallelism in the rules for
or; and J-calculus has a sequential evaluation [9].

4. A-rewrite systems

Here we are not concerned with a study of definability in A-calculus, which is an
issue that has not yet been explored extensively. For recent progress on this subject,
see [8]. However, the three examples of the previous section show that it is worthwhile
to study extensions of A-calculus with term rewriting rules. Let us indicate A-calculus,
with as only rule the one of f-reduction, by 4 and abbreviate a term rewriting system
without bound variables as TRS. A combination of A-calculus and some TRS will be
called a A-TRS. They may be of two kinds: the ones where A and the TRS have disjoint
alphabets, in which case we denote by 4@ R the extension of A with the TRS R, agd
the ones where R contains the application operator just as 4, in which case we write
AUR. The three examples of extensions of A-calculus are of the latter kind and
illustrate the expressiveness of the class of A-TRSs. We note that, in recent years,
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several studies have appeared of extensions of various typed 1-calculi with ordinary
term rewriting rules, sometimes called “algebraic rewriting” [10, 11].

5. Metavariables with arity

In the next section we will investigate the expressiveness of A-TRSs. We will
especially be concerned with the study of rules with bound variables. In this section
a notational device is introduced for writing rules with binding structures in an easy
way.

In informal discussions on A-calculus, one sometimes uses the sloppy but intuitively
clear and convenient notation for the S-reduction rule: (Ax.M (x)) N —M (N), instead
of the usual notation given above employing the explicit substitution operator
[x:= N7]. The sloppiness is in the use of M (N ): on its own this notation does not make
sense, only in the context of having stated “let M be M(x)”, as is done by writing
{(Ax.M(x)) N, does it make sense to employ M (N), then meaning M [x:= N]. How-
ever, in the sequel we will give a perfectly rigorous semantics to this, up to now, sloppy
notation.

This leads (after Aczel [2]) to the introduction of metavariables with arity. For
example, M(x) is a unary metavariable. Also, we will employ henceforth a special
notation for metavariables: Z}, where n denotes the arity, n>0, and k>0 is an
enumerating index. For ease of reading however, we will just write Z, Z', Z", ..., omit-
ting the arity indication which is clear from the use of these metavariables. For the
variables intended to be bound by some “quantifier” (or rather, “qualifier” as it
qualifies the intention of how the binding is used) such as A, y, or indeed V, 3, we write

x,),z,... For example, A-calculus with surjective pairing now takes the following more
pleasing form:

(Ax.Z(x))Z'~Z(Z"),
left(pair ZZ')—Z,
right(pairZZ')-»2Z’,
pair(left Z)(right Z)—Z.

A feature of this notation is that it allows expression of a simple but frequently
occurring type of side-condition. For example, the #-rule of A-calculus is written as

Ix.Zx—Z.

Usually, stating the n-rule, one adds the restriction “provided x does not occur in Z”.
However, our formal definition (Section 11) of the kind of rules we are introducing

makes this superfluous: an instantiation of Z in ix.Zx will by definition not have free
occurrences of x.
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An example involving n-ary metavariables (“n-ary B-reduction”) is
AXy oo X0 Z(X15e s X)) 21 2> Z(Z .. Z).
A pathological one, suggesting the ease of writing iterated substitutions, is
oxy.Az2.2Z(x)Z'(y)—~Z(Z'(Z(Z'(Az.2)))).

Note that, as in the case of the #-rule, an instance of Z(x) is not allowed to contain free

occurrences of y or of z, and instances of Z’(y) are not allowed to contain free x’s
or z’s.

6. Extensions of A-calculus with rules with bound variables

Besides extensions of A-calculus there are various other examples of rewrite systems
with bound variables in which the feature of bound variables may be used in quite
a different way. For example

ux.M—-M[x:= ux.M]

as in the operational semantics for recursively defined concepts (e.g. in recursive
procedures as in [15] and in processes defined by recursion [34]). In the notation just
introduced, this rule is written as

ux.Z(x)—>Z(ux.Z(x)).

This rule is definable in pure A-calculus by defining ux.Z(x) as Yy(ix.Z(x)), with
Yr=(Axf.f(xxf))(Axf.f(xxf)), Turing’s fixed point combinator. Indeed, we then have

ux.Z(x)=Yr(lx.Z(x))
—»Z(Yr(Ax.Z(x)))
=Z(ux.Z(x)).

Par abus de langage, let us say that we have defined p by YrA. In the precise CRS
format below, u is in fact defined by BY:A, where B is the composition combinator
(Axyz.x(yz). Usually instead of B the infix notation employing ° is used, rendering 4 as
Yrol

Another example stems from proof theory. There one is concerned with proof
normalization (cf. [41, 19]):

P(LZ)(Ax.Z'(x)) (Ax.Z"(x))~Z(Z),
P(RZ)(Ax.Z'(x)) (Ax.Z" (x)) = Z"(Z).

These rules are easily defined in 4 (e.g. by taking P=Ax.x, L=Axyz.yx and
R =Jxyz.zx). Also the pathological rule oxy.Az.zZ(x)Z'(y)—Z(Z'(Z(Z'(Az.2)))) can
easily be defined in A.
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7. Definable extensions of A-TRSs

Consider the following reduction system with rules with bound variables.
yxy.F(x, 3, Z(x, y)=C,
yxy.F(Z(x,y),x,y)=C,
yxy.F(y,Z(x,y),x)=C.

These y-rules are immediately obtained, once we have at our disposal the TRS # with
rewrite rules:

F(A4,B,Z)~C,
F(Z, 4,B)~C,
F(B,Z,4)~C.

Then, putting G=/Az.zAB we havein A @ & the reduction G(ixy.F(x,y, Z(x, y)))>»C,
and similarly for the other two rules for y; hence, we can define y as GA.

8. Proper extensions of -TRSs

With 1-TRSs as reduction format at our disposal, one can ask whether every system
involving pattern matching and binding of variables can be written as a A-TRS. This
would mean that all reduction sequences could be neatly separated into a A-part
(f-reduction) and a pattern matching part (first-order term rewriting as in a TRS). It
would be interesting if this were indeed the case. However, if binding structures for
variables are used in other ways than for expressing a substitution mechanism, then

we doubt that they can always be expressed by means of a A-TRS. Two examples
feeding this doubt are

Ix.Zx—Z,
Px.XZ(x)>Z(Q),

where Q= (4x.xx)(4x.xx). With reference to the second rule (which is our preferred
example since in combination with the f-rule of A-calculus it is still orthogonal), the
question is whether a A-term R exists such that

R(Ax.xZ(x))»Z(Q).

We conjecture that such an R does not exist, also in the case when operators from
a TRS (without bound variables) are used. The point is that Z(x) cannot be extracted
from the application xZ(x), and trying to get rid of the prefixed x by some substitution
also disturbs Z (x) irreversibly (see the proof idea below). Note that it would be easy to
find an R’ such that R'(Ax.xZ(x))»Z(I), where I=Ax.x. The same holds with
K=4xy.x instead of I. Actually, if we admit an extension with a TRS containing
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application, we can extract Z(x) from xZ(x), namely by using an operator J with (in
applicative notation) the rule J(Z,Z,)—Z,; but the extension would be inconsistent

in the sense of making all terms interconvertible, as an easy exercise in A-calculus
shows.

Proof idea. Take Z(x)=Q"x=Q...Qx (n times Q). Now suppose there exists an
R such that for all n we have R(Ax.x(Q"x))—»Z(Q)=Q"*!. This reduction must have
the form

R(lx.x(Q"x))—»(lx.x(Q"x))Sl Sk—’Sl(Qnsl)Sz "'Sk
—»QnSI Tl oo TpSZ ...Sk"»Q("+l).

This is only possible if p=0, k=1 and §; »Q, contradicting the fact that §; must have
a head normal form. (It will require a lot of work to make this argument rigorous, also
because of the allowed presence of TRS operators.)

Another example of a system with a curious use of bound variables is

ax.or(Z, x)—Z,
ax.or(x, Z)~>Z.

As these examples illustrate, it seems very reasonable, if not necessary, to consider
reduction systems more general than A-TRSs. A format of this type, combining term
rewriting and binding structures for variables, has been developed in [30], generaliz-
ing an idea of Aczel [2]. The resulting CRSs employ a notation of metavariables with
arity. The following rules constitute an example of a CRS:

Ax.Z(x)Z'-2Z(Z"),

left(pair ZZ')—~Z,
right(pairZZ)—Z’,
px.Z(x)>Z(ux.Z(x)),
P(LZ)(Jx.Z'(x))(4x.Z" (x))>Z'(Z),
P(RZ)(Ax.Z'(x))(4x.Z"(x))—Z"(Z),
oxy.Az.2Z(x)Z'(y)~>Z(Z'(Z(Z'(Az.2)))),
yxy.F(x,y, Z(x,y))~C,
yxy.F(Z(x,y), x,y)~C,

yxy.F (3, Z(x, ), x)~C,
px.xZ(x)—>Z(Q),

ax.or(Z, x)—Z,

ax.or(x, Z)—Z.
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A formal definition of CRSs can be found in Section 11.

9. Orthogonality

We call a CRS orthogonal when its rewrite rules are independent of each other.
More precisely: suppose that R and S are redexes in M, such that R contains the redex
S. Suppose R is in fact an r-redex, where r is the name of a rewrite rule. Then we
require, for orthogonality, that contraction of S does not affect the r-redex status of
the subterm R’ resulting from R. How can we guarantee this? By imposing the
following two requirements:

(1) The CRS does not contain rules with a left-hand side in which some metavari-
able has multiple occurrences; in other words, the rules must be left-linear.

(2) Whenever a redex R contains a subredex S, then S must in fact be contained in
one of the instantiated metavariables of the rule according to which R is a redex. In
other words, the rules are nonoverlapping.

As to (1), note that multiple occurrences of bound variables in a left-hand side of
a rule are allowed.

9.1. Examples

The CRS of the previous section is orthogonal. The one-rule system consisting of
Ax.Zx—Z is orthogonal. However, Afy-calculus, consisting of the two rules

Ax.Z(x)Z'-2Z(Z'"),
Mx.Zx—Z

is overlapping, and hence not orthogonal. The following underlined terms suggest the
overlaps:

(Ax.Z(x))Z'.

The underlined part, not contained in a metavariable, may be instantiated to an
n-redex.

Ix.ZXx.

The underlined part, not contained in a metavariable, may be instantiated to a -
redex.

The rules ax.or(Z, x)—Z and ax.or(x, Z)—Z exhibit a curious phenomenon. They
are seemingly overlapping, namely, by instantiating Z to x in both left-hand sides.
However, this is not allowed; legitimate instantiation of Z has no free occurrences of x,
because these occurrences would be bound by ax. This will be clearer after intro-

ducing CRSs formally. Here we conclude that the rules for « are, surprisingly, non-
overlapping.
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The rules Axy.F(Z(x,y))—0, Axy.F(Z(y,x))—1 are overlapping. Note that differ-
ent instantiations may be used to show the overlap.

The rules Axy.F(x,Z(y))—0, ixy.F(y,Z(x))—1 are orthogonal. The rule
AxAy.Z(x,y)—0 is self-overlapping.

10. Substructures

The A-calculus is a “full” rewrite system since the inductive clauses describing the
formation of terms are not subject to any restriction. There are useful “substructures”
of A-calculus where the term formation clauses do have some restrictions. A well-
known example is the Al-calculus, where the abstraction clause reads: if M is a Al-
term, then Ax.M is a Al-term provided x occurs at least once freely in M. Another
substructure of 4 is given by the set of strongly normalizing terms (terms not admitting
an infinite reduction); another by the set of weakly normalizing terms (terms having
a normal form). A fourth example is the set of terms which are simply typable. All
these substructures are closed under reduction; that is, when M is a term in the
domain of the substructure, then all its reducts are also. We will take this property as
the defining property for a substructure. In the theory of typed A-calculi it is known as
the subject reduction property (see also [7, Definition 12.97]).

Next to “full” CRSs, we now also admit all its substructures as CRSs. We will call
CRSs which are not full (which have restricted term formation) restricted CRSs.

Since we are almost exclusively interested in the “reduction theory” of CRSs (rather
than the equality theory, or convertibility theory), almost all propositions proved for
full CRSs also hold for restricted CRSs. For instance, when a full CRS is confluent, all
its sub-CRSs are also confluent. The only property we know which is sensitive for the
difference between full and restricted is as follows. (See Fig. 1.)

Theorem 10.1. Let R be an orthogonal full CRS. Let M be a term in R having a normal
form N but also admitting an infinite reduction. Then N has an infinite expansion, i.e. an
inverse reduction.

For a proof, see [30]. Obviously, this “N-property” does not hold in general for
restricted orthogonal CRSs, since the set of terms need not be closed under expansion
(inverse reduction).

Admitting substructures as CRSs has an important consequence; ie. the equiva-
lence of the so-called applicative notation and the functional notation for TRSs and
CRSs, as follows. In most of the examples mentioned above, we employed the
applicative style of notation which is well known from A-calculus and Combinatory
Logic. (Instead of “applicative” one can also use the word “curried”.) In an applicative
system there is one binary operation @, application and all other operators are 0-ary, ‘
ie. constants. The usual notation is to write (zs) instead of @ (¢, s), and one adopts the
well-known convention of “association to the left”, to restore missing bracket pairs. In
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infinite reduction
infinite expansion

N
normal form

N-property for orthogonal full CRSs

Fig. 1.

general systems there may be operators of any arity. We will also call general systems
“functional” systems. So clearly the applicative systems form a subclass of the
functional systems. Therefore, the question arises: is the functional notation more
expressive than the applicative notation, or in other words, is the class of functional
systems essentially larger than that of applicative systems? In some places in the
literature this seems to be suggested. However, the answer is negative, once we have
the notion of subsystem (sub-CRS) available, as introduced above (and more precisely
below).

Example 10.2. Consider the functional TRS R:
A(x, 0)-0,
A(x,S(y)—=S(A(x, ),
defining addition A in terms of 0 and successor S. The applicative version R*? of R is
Ax0-0,
Ax(Sy)—S(Axy),
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inclusion

ISOmMoYp

)

applicative functional
systems systems

Fig. 2.

where the usual applicative notation (as in CL, Combinatory Logic) is used. That is,
Ax0 is short for @ (@ (4, x),0), where @ is application. Clearly, R* is not isomorphic
to R, as there are “surplus” terms such as A0 or A000 or A4A that have no
counterpart in R. But R is isomorphic to a substructure of R*?, with terms that are
inductively defined by

- X, ),...,0 1s a term,

— if t,s are terms then Ats is a term,

— if t is a term then St is a term.

It is clear that, in general, a functional system is isomorphic in this way to a restricted
applicative system (see Fig. 2). Thus, the styles of applicative and functional notations
are equivalent and equally expressive.

11. Formal definition of a combinatory reduction system

11.1. Alphabet of a combinatory reduction system

A CRS is a pair consisting of an alphabet and a set of rewrite rules. In a CRS
a distinction is made between metaterms and terms. The left- and right-hand side of
a rule are metaterms, and rules act upon terms. This distinction is made in order to
stress the point that a reduction rule acts as a scheme, so its left- and right-hand side
are not ordinary terms. For instance, in a term rewriting system, F(x) as a term is
something different from F(x) as the left-hand side of a reduction rule. In CRSs,
metaterms occur only as the left- or right-hand side of a reduction rule. They may
contain metavariables that indicate a position in a reduction rule where an arbitrary
term can be substituted. Terms do not contain metavariables, but may contain
variables. Taking this point of view, x in F(x) as a term is a variable, and x in F(x) as
a left- or right-hand side of a reduction rule is a metavariable. In CRS notation, the
former is written as F(x) and the latter as F (Z).

The alphabet of a CRS consists of

(1) a set Var={x,|n>0} of variables (also written as x, y,z,...),
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(2) a set Mvar of metavariables {Z5|k, n>0} (here k is the arity of z5,

(3) a set of function symbols, each with a fixed arity,

(4) a binary operator for abstraction, written as [_]_,

(5) improper symbols ‘(*,*)’ and *,”.
The arities k of the metavariables Z¥ can always be read off from the metaterm in
which they occur — hence we will often suppress these superscripts. For example, in
(Ax.Zo(x))Z, the Z, is unary and Z, is O-ary.

11.2. Term formation in a combinatory reduction system

Definition 11.1. The set MTerms of metaterms of a CRS with an alphabet as in
Section 11.1 is defined inductively as follows:
(1) variables are metaterms;
(2) if ¢ is a metaterm and x a variable, then [x]t is a metaterm, obtained by
abstraction;
(3) if F is an n-ary function symbol (n>0) and ¢,...,t, are metaterms, then
F(t,...,t,) is a metaterm;
(4) if ty,...,t, (k=0) are metaterms, then Z%(t,,...,t;) is a metaterm (in particular
the Z? are metaterms).
Note that metavariables Z%*! with arity >0 are not metaterms; they need arguments.
Metaterms without metavariables are terms. The set of terms is denoted as Terms.

Notation.

(1) An iterated abstraction metaterm [x;]...[x,—1][x,]t is written as
[x1,-..,x,]t. For a unary function symbol F, we will often write Fx; ... x,.t instead of
F([xy,...,x,]t). For instance, Ax.t abbreviates A([x]t).

(2) We will adopt the following conventions:

e All occurrences of abstractors [x;] in a metaterm or term are different; e.g.
A([x][x].t) is not legitimate, nor is A([x].@(t, A([x].t))).

e Furthermore, terms differing only by a renaming of bound variables are
considered syntactically equal. (The notion of “bound” is as in A-calculus: an

occurrence of a variable x is bound if it is in the scope of an abstractor [x]. It
is free otherwise).

Definition 11.2. A (meta)term is closed if every variable occurrence is bound.

11.3. Rewrite rules of a combinatory reduction system

A rewrite (or reduction) rule in a CRS is a pair (s, t), written as s—¢, where s and ¢ are
metaterms such that:

(1) s and ¢ are closed metaterms;

(2) s has the form F(t,...,t,);
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(3) the metavariables Z¥ that occur in t also occur in s;
(4) the metavariables Z} in s occur only in the form Z*(x,,...,x,), where the
x; (i=1,..., k) are variables. Moreover, the x; are pairwise distinct.

If, moreover, no metavariable Z¥ occurs twice or more in s, the rewrite rule s—t is
called left-linear.

Example 11.3. @ (A([x]Z(x)),Z')—Z(Z') is the left-linear rule of f-reduction in A-
calculus. Application is here expressed by the binary function symbol @.

12. Extracting the reduction relation

It requires some subtlety to extract from the rewrite rules the actual rewrite relation
that they generate. First we define substitutes (we adopt this name from Kahrs [25]).

Definition 12.1. Let ¢ be a term.

(1) Let (x4,...,x,) be an n-tuple of pairwise distinct variables. Then the expression
A(X1,..-,X,).t is an n-ary substitute. We use A as a “metalambda” to distinguish it from
the one of A-calculus.

(2) The variables x;, ..., X, occurring in ¢ are bound in the substitute A(xy,..., X,).L.
They may be renamed in the usual way, provided no name clashes occur. Renamed
versions of a substitute are considered identical. The free variables in A(xy,..., X,).2
are the free variables of t except xy,..., x,.

(3) An n-ary substitute A(x,,...,X,).t may be applied to an n-tuple (t,...,t,) of
terms from the CRS, resulting in the following simultaneous substitution:

(AX1sears X)) (1, ty)=E[x1 = Ty, X = t.]-

Definition 12.2. A valuation is a map o assigning to an n-ary metavariable Z an n-ary
substitute:

o(Z)=A(x1s. s Xn). L.

Valuations are extended to a homomorphism on metaterms as follows:

(1) o(x)=x for xeVar;

() o([x]t)=[x]a(t);

() o(F(t1,--->ta))=F(o(t1)s-.-, (tn));

@) o(Z(ts, s tn))=0(2)(a(t1),--, 0 (ta)).

So if 6(Z)=A(xy,-..,X,)-L, then G(Z(tyy-eesty))=t[x1 = 0(t1)-. 0, X0 = f’(t")]'

We will now formulate some “safety conditions” for instantiating rewrte rules to
actual rewrite steps. Intuitively, we could summarize their description as ff)llows:
rename bound variables as much as possible in order to avoid name clashes, i.e. free
variables x being captured unintentionally by abstractors [x].
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Definition 12.3. (1) Let s—t be a rewrite rule. A renaming of that rule (by renaming
the bound variables in s,t) will be called a variant of the rule.

(2) Let o be a valuation. Then a variant of o originates by renaming the bound
variables in the substitutes a(Z).

(3) Let s—t be a rewrite rule and ¢ a valuation. Then s—t is called safe for o if, for
no Z in s and t, the substitute ¢(Z) has a free variable x occurring in an abstraction
[x] of sort.

(4) Furthermore, o is called safe (with respect to itself) if there are no two substi-
tutes ¢(Z) and ¢(Z’) such that o(Z) contains a free variable x which appears also
bound in ¢(Z’).

Note that for every rewrite rule s—t and valuation ¢ there are variants ¢’ and s’ —t'
such that ¢’ is safe and s'—t’ is safe for ¢’. In the following we will suppose that all
valuations are safe with respect to themselves and with respect to the reduction rules
to which they are applied.

Example 12.4. The n-reduction rule variant 1x.Zx—Z, or in full notation written as
AM[x]@(Z, x))—2Z, is not safe for ¢ with (Z)=x. The variant Ay.Zy—Z is safe for o.

Definition 12.5. Let o be a fresh symbol. A term with one or more occurrences of o is
called a context. A context with n occurrences of o is written as C[ ... ], and one with
exactly one occurrence of o as C[ ]. The result of replacing the n occurrences of
o from left to right by terms ¢,,...,t, is written as C[ty,...,t,]. We call s a subterm of
t if there exists a context C[ ] such that t=C[s].

Definition 12.6. (1) Let s—t be a rewrite rule version which is safe for the safe
valuation 0. Then o(s)—o(t) is called a rewrite or contraction. The term o (s) is called
a redex.

(2) Let o(s)—o(t) be a rewrite, and C[ ] a context. Then C[a(s)]—>C[ao(t)] is
called a rewrite step (or reduction step).

(3) —» is the reflexive~transitive closure of the one step rewrite relation — on terms.
If s—t then we say that s reduces to t and ¢ is called a reduct of s.

Remark. We need s—1 to be safe for o to prevent variable capture when evaluating
the left-hand side of the rule. We need ¢ to be safe (with respect to itself) because
otherwise undesired variable captures take place in evaluating the right-hand sides of
rules. For example, consider Z(Z') with o such that ¢(Z)=A(y).(1x.xy) and 6(Z')=x
(so o is not safe). Then 6(Z(Z"))=0(Z)(c(Z))=(A(y).(Ax.xy))(x) = Ax.xx, with vari-
able capture. Note that free variables in the rewrite o(s)~a(t) may be captured by the
context C[ ] in which it is embedded to form a rewrite step C[a(s)]—C[a(t)]; but
that is intended!

Example 12.7. In this example we write t° instead of o(t). We reconstruct a step
according to the f-reduction rule of A-calculus (written in the usual, applicative,
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notation):
(Ax.Z(x))Z'>Z(Z").
Let the valuation Z°=1(u).yuu, Z'" = ab be given. Then we have the reduction step:
((Ax.Z(x))Z')° =(Ax.Z(x)°)Z'°
=(Ax.Z°(x"))Z'°
=(Ax.(Au. yuu)(x))(ab)
=(Ax.yxx)(ab)
-
(Z(Z))y=z(Z")
= (Au.yuu)(ab)
=y(ab)(ab).

Note that in the CRS format there is no need for explicitly requiring that some
variables are not allowed to occur in instances of metavariables. For instance, in
F([x]Z), an instance of Z is not allowed to contain free occurrences of x. In A-calculus
such a requirement cannot be made in the system itself; it has to be stated in the
metalanguage, as is done for the #-rule. In this sense the CRS formalism is more
expressive than that of A-calculus.

This requirement, discussed in Section 12.3 (3), is necessary: consider e.g. the rule
x.xZ—Z. Suppose we did not require that Z cannot have free occurrences of x. Then
Tx.xx—X; but that would mean that a closed term rewrites to an open term, ie. free
variables appear out of the blue, which of course is disallowed. One may ask why this
is not the case for the rule tx.xZ(x)—Z(x); the answer is that this is not a legitimate
rule because the right-hand side is not a closed metaterm.

We will now give a more precise definition of overlap and orthogonality.

Definition 12.8. Let R be a CRS containing rewrite rules {r;=s;—t;|iel}.
(1) R is nonoverlapping if the following holds:

e Let the left-hand side s; of r; be in fact §;(Z,(%y),...,Zn(%n)) Where all meta-
variables in s; are displayed and X; is short for (x;,,...,X;,) with k; the arity of Z;.
Now if the r;-redex o(s;(Z1(X1), .-, Zm(%n))) contains an r;-redex (i #J ), then this
r;-redex must be already contained in one of the 6(Z,(X,)).

o Likewise if the r;-redex properly contains an r;-redex. .
(2) R is left-linear if all s; are linear. A metaterm is linear if it does not contain

multiple occurrences of the same metavariable. (Example: px.xZ(x) is linear;

axy.F(Z(x), Z(y)) is not linear.)
(3) R is orthogonal if it is nonoverlapping and left-linear.
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Actually, what we have defined now are full CRSs, with unrestricted term forma-
tion. We conclude this section with a more precise definition of sub-CRSs.

Definition 12.9. (1) Let (R, =) be a CRS as defined above. Let T be a subset of
Terms(R), which is closed under —g. Then (7, »g|T), where —¢| T is the restriction
of —g to T, is a substructure of (R, —g).

(2) If (R, —g) is orthogonal, so are its substructures.

13. Confluence proof a la Aczel and superdevelopments

In this section we will sketch a short proof of the fact that all orthogonal CRSs are
confluent and we will briefly discuss the notion of superdevelopment. For full proofs
see [42].

13.1. Confluence

The proof of confluence for orthogonal CRSs proceeds along the lines of the proof
by Aczel of confluence for orthogonal contraction schemes, which form a subclass of
CRSs [2]. The proof strategy in Aczel’s proof is the same as in the proof of confluence
of A-calculus with f-reduction by Tait and Martin-Lof. This strategy is also employed
in several other proofs [38,46]. The idea is roughly as follows. A relation > on terms
is defined such that its transitive closure equals reduction. For this relation the
diamond property is proved. A binary relation » satisfies the diamond property if,
whenever a>b and arc, there exists a d such that b>d and c>d. Having proved the
diamond property for >, confluence of the reduction relation follows immediately.

The method of Aczel’s proof is the same as in the proof by Tait and Martin-L&f. The
difference is due to the relation on terms that is defined. If we write > for Aczel’s
relation and —,; for Tait and Martin-Lo6f’s relation, we have that —, implies >, but
not necessarily vice versa. For the proof of confluence for orthogonal CRSs, a relation
like Aczel’s, denoted as >, is used.

Definition 13.1. The relation > on Terms is defined as follows:

(1) x=x for every variable x;

(2) if s>t then [x]s>[x]t for every variable x;

() ifsy=t4,...,8,2t, then F(sy,...,8,) =F(ty,..., t,) for every n-ary function sym-
bol F;

@) if sy=ty,...,8,2t, and F(ty,...,t,)=0(x) for some reduction rule «a—p and
valuation o, then F(sy,...,s,)>a(f).

The first three clauses of the definition state that > is a reflexive relation that is
closed under term formation. The fourth clause expresses that s>t if s reduces to t by
a parallel “inside-out” reduction, where redexes that are “created upwards” may be
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contracted. Note that in this clause F(s,,...,s,) is not necessarily a redex. Here lies the

difference with the relation . Consider, for example, the following term rewriting
system:

F(B)—-C,
A—B.

Then we have F(4)=C but not F(4)—, C.
In general, the fourth clause can be depicted as follows:

F(Sg,..-58,)
VooV
o(@)=F(ty,....t,) — a(f).
The next proposition states that > is indeed a useful relation for which to prove the
diamond property.

Proposition 13.2. The transitive closure of = equals reduction.

The crucial step in proving the diamond property for > is proving that > satisfies
a property named “coherence”. This notion was originally introduced by Aczel [2].

Definition 13.3. A binary relation > on Terms is said to be coherent with respect to
reduction if the following holds: if F(a;,...,a,)=0(a) for some reduction rule a—f
and valuation o, and a;»by,...,a,>b,, then we have for some valuation t that
F(by,...,b,)=1(x) with o(B)>1(p).

Coherence can be depicted as follows:

F(a,...,a,)—a
\% v v
F(by,...,b,)—b.

It is now a matter of routine to prove coherence of > with respect to reduction.
Lemma 13.4. The relation > is coherent with respect to reduction.

If coherence for the relation > has been established, the diamond property of
> can be proved by induction.

Theorem 13.5. The relation > satisfies the diamond property.

Proof. Suppose a>b and a>c. By induction on the derivation of az=b it can be
proved that a d exists such that azdand b=d. U

Confluence of orthogonal CRSs is now a direct consequence of this theorem.
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Corollary 13.6. All orthogonal CRSs are confluent.

13.2. Superdevelopments

Besides the proof by Tait and Martin-Lof for confluence of A-calculus with f-
reduction there are other proofs, one of which proceeds by proving first that all
developments are finite. A development is a reduction sequence in which only descend-
ants of redexes that are present in the initial term may be contracted. Redexes that are
created along the way are not allowed to be contracted. Both confluence proofs are
related in the following way: M+ N if and only if a (complete) development M —-» N
exists (see [5]).

A natural question now is whether reduction sequences corresponding exactly to
the relation > can be characterized, and if so, whether they are always finite. For the
case of A-calculus, it turns out that reduction sequences corresponding to = can be
characterized by a more liberal notion of development, called a superdevelopment.
This is done by defining a set of labelled A-terms 4, and labelled f-reduction —g on
them. The difference between developments and superdevelopments in A-calculus can
be understood by considering the different ways in which S-redexes can be created.
This has been studied by Lévy [32]. The following possibilities are distinguished
(written in the usual notation for A-calculus):

(1) (Ax.Ay.M)N)P —4(ly.M[x:= N])P;

() (Ax.x)(Ay.M)N —4(Ay.M)N;

(3) Ax.C[xM1)(Ap.N) =z C'[(Ay.N)M '], where C’ and M’ stand for C and M,
respectively, in which all free occurrences of x have been replaced by Ay.N.

In a development, no created redexes at all may be contracted. In a superdevelop-
ment, created redexes of the first two kinds may be contracted. Note that, if we think
of a A-term as a tree built from application- and A-nodes, the redexes in the first two
cases are “created upwards”. In the last case, on the other hand, the redex is not
created upwards, and may not be contracted in a superdevelopment.

It is proved in [42] that (complete) superdevelopments correspond exactly to the
relation > and moreover that all superdevelopments are finite. The result that all
superdevelopments are finite illustrates that all infinite f-reduction sequences in
A-calculus are due to the third way of redex creation; indeed redex creation, e.g. in the
reduction sequence of (Ax.xx)(Ax.xx), happens in this way. The first two kinds of
creating redexes are “innocent” and may be contracted in a superdevelopment.

We will now define the set of labelled A-terms and labelled f-reduction on them.
Application nodes are written explicitly, but abstraction terms as usual. Lambda’s will
be labelled by a label from a countably infinite set of labels I, and application nodes be
labelled by a subset of I.

Definition 13.7. The set A4, of labelled A-terms is defined as the smallest set such that
(1) xe 4, for every variable x,
(2) if MeA, and iel, then A;x.Me4,,
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(3) if M,NeA, and X <1, then @*(M, N)e 4,.
The reduction rule B, on A, is defined as

@ (Aix.Z(x),Z") -5, Z(Z') ifieX.

As usual in A-calculus we adopt the variable convention, ie. all bound variables in
a statement are supposed to be different from the free ones. Note that the set of
labelled A-terms with labelled f-reduction is in fact an orthogonal CRS.

The idea of a superdevelopment is that only p-redexes are contracted if the
application node “knows” the / already, or more formally, if the 4 occurs in the scope
of the application node in the initial term. Now $, reduction is used to formalize this
idea. An expression @*(4;x.M, N) is a §;-redex if ie X. Reduction steps of a term that
are allowed according to the notion of superdevelopments we have in mind are
Bi-reduction steps if the term is labelled such that the label of an application node
contains no more than the labels of A’s in its scope. We will call a labelled A-term good
if it satisfies this condition on the labels.

For example, @?(@ " (4, x.4,y.xy,2),u) is a good term but @'} (4, x.@*(x, y),
A,y.y) is not good.

All reducts of a good term are good, intuitively because f,-reduction cannot push
a A outside the scope of an application node in which it occurred originally.

Now we can define superdevelopments. If M e, is a good term such that all 4's
occurring in M have a different label, and M 4 N is a f-reduction, then this
reduction sequence is a superdevelopment after erasing all labels.

The following results are proved in [42].

Theorem 13.8 (Finite superdevelopments). If a A-term M is labelled such that all X's
have a different label then all its Bi-reductions are finite.

Theorem 13.9. M >N if and only if there exists a fy-reduction sequence to B,-normal
form M’—»5 N' such that M',N' yield M, N after erasing labels.

14. Related work

There have been several approaches to formulating a general framework for term
rewriting, including first-order term rewriting and lambda calculi. Without attempt-
ing to give a complete historical survey of such approaches, we mention some ?f.the
most noteworthy, referring for a more elaborate discussion to [30] or to the original
references.

One of the first extended formats consists of Hindley’s A(a)-reductions. They
combine A-calculus with orthogonal TRSs, thus containing all orthogonal A-TBSS. In
fact they contain more than A-TRSs, since right-hand sides of rules may include
A-terms. They also contain Church’s 5-rules (see Example A.1).



298 J.W. Klop, V. van Oostrom, F. van Raamsdonk

lazy simulation

Fig. 3.

The fundamental idea leading to the present framework of CRSs was formulated by
Aczel [2], who devised “contraction schemes”. They do not support arbitrary complex
pattern matching as in first-order TRSs, but apart from that they introduce variable-
binding as in the present CRSs.

Wolfram [48] describes a general notion of higher-order rewriting. This is the
starting point for a recent formulation of higher-order rewriting that is given by
Nipkow [37] in his higher-order rewrite systems (HRSs). The metalanguage employed
for HRSs is the simply typed A-calculus, facilitating the definition of substitution. For
a comparison of CRSs and HRSs, see [39]. It turns out that both formats are roughly
co-extensive, and have the same expressive power. This is a satisfactory state of affairs
to us, since it hints at the possibility that the formulation of CRSs and HRSs, in spite
of the apparent differences in their actual definition, has hit upon a canonical
framework for higher-order rewriting. (This does not mean that there are not several
desirable extensions of the present CRS/HRS format; see our list of possible exten-
sions in Section 15.) In Fig. 3 the relation between HRSs and CRSs is indicated. For
a large class of HRSs that we have called “simple HRSs”, including A-calculus and
TRSs, we have an exact correspondence between CRSs and HRSs, modulo notational
differences. That is, there are direct translations between terms in CRS-format and in
HRS-format that preserve one-step reduction in both directions. The “surplus-HRSs”
do not really add expressive power: they can be simulated by CRSs, but less directly.
Namely, one step in the CRS corresponds to one step in the HRS, but one step in the
HRS will correspond to several steps in the CRS. Roughly, there is an analogy with
the relation of A-calculus to Ag-calculus or A-calculus with explicit substitution: in the
latter one f-step is simulated by several steps (see [1]). Thus, we can say that CRSs
have a more “explicit” substitution mechanism than HRSs. This can be considered as
either an advantage or a disadvantage, depending on one’s point of view or needs. In
the figure we have referred to the more explicit (i.e. “slower”) way of CRSs for
evaluating substitutions as “lazy simulation”.

The format of higher-order rewriting developed by [28, 29] is equivalent to that of
CRSs but the set-up is closer that of A-calculus and of first-order logic.

Extensions of 1-calculus by means of conditions were studied in [45,46]. These
“conditional A-calculi” comprise many CRSs; in a personal communication we have
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learned that a slight generalization of the conditions leads to the whole class of CRSs
(in fact, even a somewhat larger class).

In summary, there seems to be a convergence of several proposals for notions of
higher-order rewriting.

15. Concluding remarks and questions

We have presented the framework for higher-order rewriting as first fully described
in [30], where Aczel’s original idea was extended with general pattern-matching
as in first-order TRSs. In the present introduction we have given a more precise
exposition than in [30] of the substitution mechanism that is involved, and we have
also sketched a confluence proof (recently obtained by [42], but also present in the
work of Nipkow and Takahashi) adapting Aczel’s original one to the present frame-
work.

The phrase “higher order” may need an explanation. It is meant as a contrast to the
usual “first order” format of term rewriting. Here the word “first order” has a precise
meaning: terms are rewritten that are from a first order language (one that features in
first order predicate logic). The phrase “higher order” has a less well-defined meaning
yet we feel that it is the right terminology, the more so because our CRS format turns
out to be quite close to, and even in some sense co-extensive with, the higher-order
rewrite systems introduced by Nipkow [37]. The word higher order there has
a well-defined meaning, as that framework employs variables and operators of higher
type, types being as in simply typed A-calculus (see our previous section for a compar-
ison). Some confusion is likely to arise in view of the wide-spread usage in the
functional language community of the term ‘higher-order’ when dealing with an
applicative system such as Combinatory Logic (CL), the idea there being that
operators need not be provided with all their intended arguments (CL can be viewed
as having ‘varyadic’ operators), so that an operator with an incomplete list of
arguments yields another operator, i.e. the first operator is of ‘higher order’. However,
usage of the term ‘higher order’ in this connection seems questionable to us, because
CL is nothing more than an ordinary first-order term rewriting system! In view of the
comparison with the HRSs as in the previous section, showing the tight connection,
we feel quite confident that the present higher-order rewrite format, whether it be in
the actual form of CRSs or that of HRSs, has hit upon a canonical framework. In
either case, CRSs and HRSs have advantages and disadvantages in their presentation:
the substitution mechanism of HRSs may be simpler, but it presupposes knowledge of
simply typed A-calculus and long fn-normal forms; CRS-rules can be written down
without being concerned with the need for “meta-typing” them, but they have a more
intricate substitution mechanism. Also, the distinction in CRSs between variables
X, Y, z, ... and metavariables Z, Z(x), ..., as opposed to the uniform treatment in HRSs,
may be viewed as both an advantage (since they play different roles) and a disadvan-
tage (since it proliferates the notion of variable). We will now mention some directions
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of research aimed at enhancing the applicability of CRSs that we are currently
pursuing.

(a) Inclusion of commutative/associative operators. A very useful extension of the
confluence result for orthogonal CRSs will be to establish confluence in the presence
of commutative/associative operators. Several axiomatisations arising in process
algebra will profit from such an extension.

(b) Inclusion of free variable rules, as in n-calculus. At present, we have required in
a CRS reduction rule s—t that t and s are closed metaterms. That is, they may contain
metavariables, of course, but not free variables. Actually, this is not forced upon us,
and we may consider rules containing free variables. A proviso is necessary: free
variables contained in the right-hand side t must also occur in the left-hand side s. The
importance of this extension is that free variable rules occur in rewrite systems
associated with n-calculus. To maintain orthogonality, and hence confluence, it must
be required that in a system containing free variable rules only variables can be
substituted for these free variables. (This requirement is met in z-calculus.) As an
example, consider A-calculus extended with the free variable rule xx—I. By consider-
ing the reducts of (Ax.xx) M it is clear that confluence is lost.

(c) Relaxing the orthogonality condition to weak orthogonality. This seems a diffi-
cult question.! However, when weak orthogonality is restricted so that critical pairs
only arise from “overlay’s”, i.e. by overlap at the root, then the proof as outlined in
Section 13 is still valid.

(d) Settling our claim that CRSs are more expressive than A-TRSs. This will require
a detailed analysis, as indicated in Section 8 (“proof idea”).

(¢) Ground confluence vs confluence vs metaconfluence. Above, we only estab-
lished confluence for terms, not metaterms. A stronger confluence result can be
obtained at once, however, admitting metavariables; for the moment let us call this
“metaconfluence”. For nonorthogonal systems, however, the notions separate.

(f) Developing a model theory (semantics) for CRSs [49, 3]. Whereas for first-order
TRSs there is a good model theory given by the usual notion of algebra, no analogous
concept is available when bound variables are present. For A-calculus it is already
nontrivial to formulate suitable notions of a model.

(g) Describing some recently studied typed A-calculi as CRSs; likewise for some
recently proposed calculi aiming to combine processes and A-calculus, such as 7-
calculus. More and more typed A-calculi are emerging at present; likewise for calculi
such as n-calculus. It will be profitable to show that they are in fact orthogonal CRSs.
Then the uniform confluence proof can be applied.

(h) Developing versions of CRSs with “explicit substitution”, analogous to the
Ag-calculi for A-calculus [1].

(i) As pointed out in [38] there is a need to extend the notion of CRSs (and of
HRSs) in such a way that metavariables in left-hand sides of rewrite rules may require

! (Added in proof.) Recently, the second and third authors have solved this question positively: weakly
orthogonal CRSs are confluent.
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their arguments to be instances of patterns. An example is
F([x]Z(cons(zero, x)))>G([x] Z(x))

for constructors cons and zero. This rule strips away the head “zero” of a “cons”

throughout the instantiation of Z at appropriate places. At present such rules do not
fit in the scope of CRSs or HRSs.

Appendix: extended examples

We conclude with four larger examples. The first two are extensions of pure
A-calculus; the second one is in fact a A-TRS. The third one is a two-sorted labelled
version of A-calculus, and the last example is a presentation of system F in the CRS
format. All four are orthogonal CRSs.

A.1. A-calculus with o-rules of Church

This is an extension of A-calculus with a constant é and a possibly infinite set of
rules of the form

6M1 ...Mn—>N,

where the M; (i=1,...,n) and N are closed terms and the M; are moreover in
Bé-normal form, ie. contain no B-redex and no subterm as in the left-hand side of
a é-rule. To ensure nonoverlapping there should, moreover, not be two left-hand sides
of different é-rules of the form 6M,...M, and M, ... M,,, with m>n. (So, every
left-hand side of a §-rule is a normal form with respect to the other é-rules.) Thus we
obtain an orthogonal CRS.

A.2. J-calculus with pairing, definition by cases, and iterator

From Aczel [2]. Note that this is an example of a definable extension of 1-calculus

Pairing Dy(DZ,Z,)—2Z,
D,(DZ,Z,)—~2,
Definition by cases R,0.Z2,...2,~Z,

R,0WZ; ... Z,—Z,

Iterator J0Z,Z,-2Z,
J(820)Z,Z,~Z(JZoZ,Z,)

Beta MIx]ZNZ'—Z(Z")
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Fig. 4.

A.3. Lévy’s A-calculus

This is a labelled A-calculus, called AL, where the labels (“Lévy-labels”) keep track of
much of the history of a reduction. It is an extremely useful tool in giving precise
definitions of notions such as descendants, equivalence of reductions, etc. It was
introduced in [32]; a simplified version is in [30].

Lévy-labels are unary-binary trees with end-nodes labelled by a,b,c,... (see the
example). More precisely, the set L of Lévy-labels is generated from some atomic
labels a,b, c,... by concatenation and underlining, as follows.

(1) a,b,c,...€L (atomic labels),

(2) if «, BeL, then afeL (concatenation),

(3) if e L, then aeL (underlining).

Terms of /' are generated as follows:

(1) x,y,z,...€Terms(A")

(2) if MeTerms(A'), then NMeTerms (i)

(3) if MeTerms(4*) and ae L, then M*cTerms(A')

So labelled A-terms may be partially labelled, or not at all. Labelled f-reduction is
defined by

(Ax.Z(x))*Z'~(Z(Z'%))e.

Here we identify iterated labels with their concatenation: (M)’ =M *. The label
a in the redex (Ax.Z(x))*Z’ is called the degree of that redex. An important feature of
A is that, during a reduction, descendants of a redex keep the same degree, while
created redexes have a degree higher than that of the creator redex. (The height of

a label is the height of the tree corresponding to it, as suggested in the example of
Fig. 4.
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Examplg AL ((x.(x*2)°)(Ay.yy)") = ((y.yy)%°z)’e. Note that the redex which is
created in the right-hand side of this step has indeed a higher degree (dca) than that of
the creator redex in the left-hand side (c).

Remark. The identification (M*)?=M®* is here entirely innocent, but a closer look
reveals that in fact this entails a little nastiness; namely, the introduction of an
ambiguous rewrite rule. Let us write lab(Z, &) for Z* and conc(, ) for of. Then the
identification amounts to employing the rewrite rule

lab(lab(Z, ), B)—lab(Z, conc(a, B)),

which is self-overlapping: lab(lab(Z, «), §).
Yet we can present A as a (two-sorted) orthogonal CRS, without “cheating”, by
having infinitely many labelled B-rules, as follows:

(- (Ax.Z(x))") =) Z' = (Z (22 ) ) 2,

A.4. Second-order polymorphic A-calculus

In this example we consider second-order polymorphic A-calculus (or polymorphic
typed A-calculus, or second-order typed A-calculus, or system F, or A2) based on the
presentation in [17]. We will show that it is an orthogonal CRS when only f-
reduction (both for term application and type application) is considered, and a weakly
orthogonal CRS when #n-reduction (for terms and types) is also taken into account. In
the first case we immediately have confluence by invoking the confluence proof for
orthogonal CRSs. The same holds for the second case, due to the recent confluence
proof for weakly orthogonal CRSs as mentioned earlier.

For treatments of second-order polymorphic A-calculus, we refer, e.g., to [23,
several articles in Ch. 2], [7,43,17].

The basic intuition is as follows. In simply typed A-calculus there is, e.g., an identity
function Ax:o.x for each type o. Polymorphic A-calculus is an extension of typed
A-calculus in the sense that type abstraction is possible, so that all the Ax: ¢.x can be
taken together to form one second-order identity function At.(Ax :t.x) which special-
izes to a particular identity function after feeding it a type o:

(At.(Ax:t.x))o—>Ax:0.x

Here ¢ is a type variable, and At is type abstraction, written with a big lambda to
distinguish it from abstraction on the object level, x. In the sequel we will employ
a syntax somewhat different from that used in this example.

Definition A.2. Var is a set of (term) variables x;, X;,...,usually written as x,y,z,...
Tvar is a set of type variables t,t,, ..., usually written as ¢, s, ... B is a set of base types
(ground types). The set T of types is defined inductively as follows:

(a) base types and type variables are types,

(b) if 6, 7€ T, then 0—1€T,

(c) if teTvar and geT7, then Vi.geT.
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Definitions of free and bound type variable occurrences and of closed type expres-
sions are as usual. Likewise notions of renaming bound type variables (x-conversion)
are as usual. For a precise treatment of these issues see [17].

We assume the presence of a set 8 of constant symbols ¢, each with its own type,
written type(c), which is required to be a closed type.

As in [17] we introduce “raw” terms, i.e. terms that are not yet subject to a typing
discipline.

Definition A.3. The set of polymorphic raw terms, P A, is defined as follows:
(a) cePA, xePA for all constants ceS and xeVar,

(b) if M,NePA, then (MN)ePA,

(c) if xeVar, ceT and MePA, then Ax:0.MePA,

(d) if ceT and MeP A, then (Mo)eP A,

(e) if teTvar and MePA, then (At.M)ePA.

We will now state the reduction rules on PA as in [17]:
(Ax:0.M)N =y M[x:= N] (p-reduction rule),
Ixio.Mx—-,M (n-reduction rule),
(At. M)t > M[t:=1] (type p-reduction rule),
At. Mt —, M (type n-reduction rule).

Note that the raw terms are very raw indeed: not only are they not subject to the
type discipline that will be introduced below, but the sorts (terms versus types) are also
mixed up: (Ax:0.M)t as well as (At.M)N are raw terms.

Let us rewrite this in CRS format. As introduced above, CRSs are single-sorted, and
we wish to maintain that property. We therefore start with a set of proto-terms
even more “raw” than the ones above. At first, types and terms will not be distin-
guished.

Definition A4. (Proto-terms for polymorphic second-order A-calculus).
(a) The alphabet of proto-A2 consists of:

variables x, y, ...,

0-ary and unary metavariables Z, Z(x),...,

constants b, b', ... (called “base types”),

- constants ¢, ¢, ... (called “term constants”),

binary function symbols—,:, @,

unary function symbols A, A4, V,

- an abstraction operator [ _]_.

(b) Terms and metaterms are defined from this alphabet as usual for CRSs.

|

|
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(c) The rewrite rules of proto-12 are:

@A([x]:(Z2",Z(x))), Z)>Z(Z') (P-rule),

@(A([x]Z(x)), 2")~»Z(Z) (type f-rule),
A[x]:(Z2", @(Z,x))~»Z (n-rule),
A[x]@(Z,x)-2Z (type n-rule).

Proto-A2 with only the f-rules is clearly an orthogonal CRS, and hence confluent.
With f- and n-rules there is a harmful overlap causing nonconfluence [17]. Proto-4i2
is an extension of pure A-calculus with respect to the set of terms, not rules. It contains
many garbage terms but also intended terms, coding the polymorphic terms we are
aiming for. The term A([x]:(N, M)) will stand for Ax: N.M; the N here will later turn
out to be of sort “type”.

We will now describe how the set of proto-terms (i.e. terms of proto-42) is restricted
to the set of polymorphically typable terms as intended. We note that in taking this
restricted subset we are free to use every device: the format of CRSs has no bearing on
that. We start with singling out a subset of the proto-terms called “types”. These are
defined as follows:

(a) variables x,y,z,... are types,

(b) base types b, b, ... are types,

(¢) if o, T are types, then (6—1) is a type,

(d) if x is a variable and ¢ a type, then V([x]o) is a type.

Only the first clause needs comment. All variables are called types because we do
not distinguish type variables versus term variables as we wish to stay in a single-
sorted framework. This will not cause problems: type- and term variables can be used
interchangeably; it is their relative position that will determine what they actually are
in a term.

A type assignment is a finite set of the form

X1 101,005 Xpn:0p,

where the x; are pairwise different variables, and the ¢; are types not containing any of
the x; freely (in order not to confuse the roles of the x; as term variables and of the
variables free in some o as type variables). We also suppose that a fixed assignment of
closed types to the constants c,c’,... is given; notation: type(c), etc.

A typing judgement is an expression of the form

Ao Mo

where 4 is a type assignment, o a type, and M a proto-term. Typing judgements are
derived by the following proof system.

Axioms:
Apc:type(c)

4,x:0>X:0
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Inference rules:

A>M:0-1 4bN:o
A>@(M,N):t
Ad,x:cpM:t

Ao AM([x]: (0, M)): 01

Ao M :V([t]o(t))

Av>@(M,1):0(1)

A>M:o
A A([t1IM):Y([t] o)

In the last inference rule there is the following proviso: if 4 contains a x : ¢ such that
x is free in M and 7 is free in o, then the rule may not be applied.
If a typing judgement 4> M : ¢ can be derived using this inference system, we write

FAbM:o

and say that M type-checks with type ¢ under type-assignment 4. A proto-term M is
called typable if there are 4,c¢ such that FA>M:0. We now restrict the set of
proto-terms to the set of typable proto-terms, and we claim that (with the same rewrite
rules as above) this yields a sub-CRS of proto-A2. The statement of this claim is known
as the subject-reduction property. This is Lemma 5.2 in [17], although here for a larger
set of proto-terms than the raw terms there; the proof is according to [17]: tedious but
not difficult. The sub-CRS of typable proto-terms is the intended one: polymorphic
second-order A-calculus. With only the S-rules it is orthogonal; with - and n-rules it is
weakly orthogonal.
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